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Self-organizing feature maps (SOFM’s) as generated by Kohonen’s algorithm are prominent
examples of the cross fertilization between theoretical physics and neurobiology. SOFM'’s serve
as high-fidelity models for the internal representation of the external world in the cortex. This
is exploited for applications in the fields of data analysis, robotics, and for the data-driven coarse
graining of state spaces of nonlinear dynamical systems. From the point of view of physics Kohonen’s
algorithm may be viewed as a stochastic dynamical equation of motion for a many particle system
of high complexity which may be analyzed by methods of nonequilibrium statistical mechanics. We
present analytical and numerical studies of symmetry-breaking phenomena in Kohonen’s SOFM
that occur due to a topological mismatch between the input space and the neuron setup. We give a
microscopic derivation for the time dependent Ginzburg-Landau equations describing the behavior
of the order parameter close to the critical point where a topology preserving second-order phase
transition takes place. By extensive computer simulations we do not only support our theoretical
findings, but also discover a first order transition leading to a topology violating metastable state.
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Critical phenomena in self-organizing feature maps: Ginzburg-Landau approach

Consequently, close to the critical point we observe a phase-coexistence regime.

PACS number(s): 87.10.+e, 02.50.Ga, 05.70.Fh, 74.20.De

I. INTRODUCTION

Recent years have witnessed an increasing cross fertil-
ization between theoretical physics and biology, in partic-
ular concerning the science of the brain. The most promi-
nent example of this development has been the analogy—
established by Hopfield [1]—between a simplified model
of a neural network and spin glasses. By the applica-
tion of the highly developed methods of spin glass the-
ory, the understanding of the behavior of neural nets was
increased considerably. The enormous relevance of neu-
ral nets for both the understanding of the brain function
and as a computing paradigm triggered one of the most
spectaculous booms in the sciences in the past decade.

The present paper is concerned with another type of
neural network models, the so-called self-organizing ones
which are of much interest for both biology and applica-
tions. The original model given by Kohonen was based on
biological considerations in the attempt of understanding
the self-organized generation of an internal representa-
tion of the environment in the brain; cf. [2]. In a later
version this model has been reformulated into an algo-
rithm which produces in a self-organized way a topo-
graphic mapping of the external world as seen by the
sensors to the internal world of neural activities. The
possible relevance of this algorithm for understanding so-
matotopic and retinotopic mappings in biology has been
clarified in extensive computer simulations; cf. Ref. [3].

Besides its biological implications of providing a simple
model of the self-organized generation of an internal rep-
resentation of the environment in living systems, the Ko-
honen algorithm [2] is also of more general interest for the
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following reasons. In practical applications the short-cut
form of Kohonen’s algorithm is used as a nonlinear gen-
eralization of principal component analysis which plays
an important role in many problems of data analysis,
above all for data in high dimensional data spaces. From
the point of view of systems theory Kohonen'’s algorithm
models a composite system with competition and coop-
eration between its constituents which may serve as a
generic though degenerate example of the emergence of
collective ordering phenomena in more complicated sys-
tems like economic or ecologic ones.

Finally, from the point of view of physics the synaptic
vectors can be viewed as coordinates of a set of hypothet-
ical particles with a complicated dynamics created by the
Kohonen algorithm. The complexity of this system is re-
flected by phenomenalike spontaneous symmetry break-
ing (analogous to nonequilibrium phase transitions) and
the occurrence of metastable states with partial ordering
or the emergence of criticality under certain conditions
[4].

Concerning practical applications these effects may
well interfere with the intentions of using Kohonen’s al-
gorithm as a reliable tool for topology preserving feature
mapping. On the other hand, if better understood these
effects might be exploited for more sophisticated appli-
cations. In this sense, there is a great lack of theoretical
study into the details of the map evolution. There is a
general proof [7] based on a generalized central limit the-
orem of the convergence of the algorithm to a stable state
under an implicitly specified cooling regime for the pa-
rameters. However, nothing is said about the topological
order of this state or on the distribution of the synaptic
vectors as a function of the input distribution. For the
one dimensional case, i.e., the mapping of a one dimen-
sional input space onto a one dimensional set of neurons,
there is a rigorous proof [6] for the convergence of the
map to the ordered state.
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Pioneering theoretical work has been performed by
Ritter, Martinetz, and Schulten [5] in the framework of a
linear stability analysis. They predicted a phase transi-
tion to occur due to dimensional conflicts between input
space and net topology and calculated the critical value
for the corresponding control parameter which measures
the strength of the dimensional conflict.

In the present paper we use methods of nonlinear
nonequilibrium statistical mechanics for the evaluation
of the critical behavior of the order parameters in the
self-organized feature map. These methods have been
used successfully in the description of pattern formation
by spontaneous symmetry breaking in reaction diffusion
systems, cf. [8], and are based on deriving from first prin-
ciples a time dependent Ginzburg-Landau equation de-
scribing the behavior of the order parameter in the vicin-
ity of the critical point where the phase transition takes
place.

The Ginzburg-Landau approach is quite general but
for the explicit calculations we study here the simple case
of mapping a rectangular data distribution in a two di-
mensional input space onto a one dimensional neuron
chain. The pertinent order parameter in this case is just
the amplitude of the folding the image of the chain de-
velops if the algorithm tries to map the two dimensional
onto the one dimensional space, which corresponds to the
attempt to cover the rectangle by the chain of neurons.

II. LANGEVIN PICTURE
OF KOHONEN’S ALGORITHM

Let us consider a set of N neurons situated at sites
7e N C 24 24 is the d dimensional lattice with unity
lattice constant, and A is a subset of Z¢ containing N
points. Each neuron is connected with the input units
by synaptic connectivities Wz € R™. The inputs to the
network are given by random stimuli ¥ € R"™ distributed
according to the probability density P(%).

The vectors of synaptic weights Wz may be viewed as a
kind of pointers into the input space, i.e., the components
of W7 may be viewed as the coordinates of the image of
the neuron situated at lattice site 7. Kohonen’s learning
rule is given by

Awz(t) = —€hj e (w7 — 7) , (1)

where 7™ denotes the winner neuron defined as the one
with the best match (least distance) between input and
synaptic vector Wz

|07 — 9| 2 ||z — T|| V7 # 7, (2)
where || ...|| denotes the Euclidean norm in R", and
7 — )32
h# 7 = exp (‘%2—)—) (3)

is a Gaussian neighborhood function of width o measur-
ing the degree by which the neurons in the vicinity of the
winner may participate in the learning step.
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The winner rule provides a mapping between the in-
put and neuron space by the agreement that all stimulus
vectors which make the neuron at site 7 the winner are
mapped onto this neuron, its pointer being the code book
vector for the set of these stimuli. This also subdivides
the input space into a disjoint set of regions called the
domains of the neurons each domain being mapped onto
one lattice site (Voronoi tessellation). On the other hand,
we may also map the lattice into the input space by just
connecting the images of the neurons in the input space
in the same way as the neurons in the lattice.

Kohonen'’s learning rule is understood best by noting
that the increment of w is proportional to the difference
vector between the stimulus vector ¥ and the pointer (or
synaptic) vector W, hence the images of the neurons are
moved in each learning step into the direction of the stim-
ulus, with step length dictated by the prefactor ehz .
In physical terms the (images of the) neurons may be
interpreted as particles moving in input space under the
influence of attractive forces exerted by the stochastically
applied input stimuli ¥. The neighborhood function acts
as a kind of interaction between the particles. In fact,
the stimulus attracts not only the particle closest to it
but also its neighbors, the neighborhood, however, be-
ing defined by the topology in the neuron space (the d
dimensional lattice in our case). Hence neighbored par-
ticles (images of the neurons in input space) move coher-
ently only if they belong to neurons which are neighbors
with respect to the topology in the neuron space. This
way the algorithm produces a dynamic grouping of par-
ticles according to the topology of the neuron space and
hence tries to reconciliate the topology of the input with
that of the neuron space. By a convenient shrinking of
the learning rate € and the width o of the neighborhood
starting from a sufficiently large value, the topology of
the neuron space eventually is reflected in the stationary
positions of the particles in the input space.

The data driven algorithm Eq. (1) defines a Markovian
stochastic process. Equation (1) may also be viewed as
a stochastic difference equation with multiplicative noise
which is verified by noting that the neighborhood func-
tion depends in a highly nonlinear fashion on the stimulus
vector ¥ since the site of the winner neuron is 7 = 7 (7).
Our approach is based on rewriting (1) into the form of
a generalized Langevin equation which essentially is a
stochastic difference equation with additive noise. This
is possible close to the stationary state of the system
as shown below. The Langevin equation is obtained by
separating the right hand side of Eq. (1) into a system-
atic and a random part. Introducing w as the combined
vector (wW|7 € N) and the average over the input distri-
bution

()= [avP@-- ()
we may write

Az = 87 (W) + fx(D), (5)

where the systematic part
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@5 (W) = — (hy,7 (W7 — 7)) (6)

essentially is the average increment of the synaptic vec-
tors with respect to the stimulus distribution P(7).
Hence the noise term is

We have suppressed the remnant dependence of f on
w for the sake of clarity. In fact, we will see below that
close to the stationary state the dependence on w can be
neglected in the noise so that we may consider Eq. (5)
as a stochastic difference equation with additive noise, ®
denoting the deterministic part.

This leads to a more detailed physical interpretation of
the Kohonen algorithm valid in the vicinity of the topo-
logically ordered state. Following Eq. (5) we may con-
sider in this case the Kohonen algorithm as the dynamical
equation of a system of N massless particles with space
vectors Wz, 7 € N (the vector 7 may be considered just
an index numbering the particles) moving in a medium
with normalized friction under forces given by ® and an
additional stochastic force represented by f. The new
feature here consists in the fact that the forces are ex-
plicitly specified by the ®, the explicit expressions for
the forces being derived below. The analogy to physics
can be made even more explicit by noting that for € suffi-
ciently small the difference equation can be interpreted as
a differential equation which identifies it with a physical
Langevin equation. The transition to a stochastic dif-
ferential equation can also be made rigorously for finite

-
/

€ if we present the stimuli not at discrete times (con-
stant waiting time), but with the waiting time between
two stimuli to be Poissonian distributed; cf. the analo-
gous considerations for the derivation of a Fokker-Planck
equation in Ref. [9].

In order to obtain explicit expressions for the deter-
ministic part of the Langevin equation we follow Ref. [5],
Egs. (216)—(218) by introducing the probability that for
the actual w the neuron at site 7 will become the winner

Pe(w) = L PRALCE (8)

with Dz denoting the domain of neuron 7, i.e., that region
in input space which makes neuron 7 the winner. The
average value of ¥ in this domain is

V= = ! / d"vP(v)v (9)
P,-.'(W) Dyr(w)
in terms of which
‘5; (W) = - Z hv‘-‘,F‘ ( _‘F - 51“") pF‘ (W) ) (10)

where 7™ now is just a summation index.

® depends on w in a complicated way. Manageable
expressions are obtained close to the stationary state of
the stochastic process w(t) by Taylor expanding $ in
terms of the deviations 4z = Wy — u'ig, where 1172 denotes
the average over the stationary state distribution. Then,
we obtain from Eq. (5) omitting terms of order higher
than two,

Auim =€ > B (T )ug ot € Y Conponn (B, 7w i+ frm (0) - (11)

' m! r et m! m'

While the coefficients By, of the linear term in the case of an one dimensional chain receiving two dimensional
inputs (n = 1, d = 2) have been obtained before, cf. [5], the nonlinear terms are treated in the Appendix. The
exclusion of higher order terms seems justified by the fact that we are interested in a stability analysis with small
values of the order parameters and hence of the @z. Moreover, by tentatively carrying out the expansion up to third
order we could show that these terms are negligible as compared to the third order terms produced from Eq. (11) in
the Ginzburg-Landau equation; see below.

The evaluation of the correlation function of the noise corresponds to that of the diffusion matrix D . (W)

0 _

=
F = Ur,

5], Eq. (219), taken at the stationary point w = w°, where o'
[5], Eq Y p

NP(@)di . (12)

2
<f'F,mfF"m'> = = Z e hinie (wg,m - wg‘,m)(wg’,m’ - w?‘-",m’) + / (’Um’Uml - wg‘ mwg‘ m
2sN £~ D, (w) T

Equation (12) is the lowest order term in the expansion in powers of u in the correlation function of the noise. Since
this term is nonzero the noise is essentially additive for sufficiently small u.

In the symmetry breaking phenomenon to be discussed below the stationary state is not unique. w2 then corresponds
to the unstable asymptotic state average the symmetry of which is broken. By introducing the Fourier transforms
(mode amplitudes)

—

Uy = exp(ii&")ﬁ; , (13)

1
Vi 2
where N is the number of neurons and the Taylor expansion of ® we rewrite Eq. (5) as

Aug, =€ Bmm(R)ug .. +e > Commim (K, TV Uz g e + F () - (14)

q,m’',m’
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Explicit expressions for the coefficients C,-jk(lz,q') are
given in the Appendix for a specific example. The non-
linear term couples the amplitudes of all modes so that
Eq. (14) is still very complicated. The nonlinear coupling
of the amplitudes of all modes appeared as the essential
mechanism of the self-organized structure formation.

III. DERIVATION OF THE TIME-DEPENDENT
GINZBURG-LANDAU EQUATIONS

For a discussion of Eq. (14) we study the case of the
mapping of a two dimensional rectangle onto a one di-
mensional chain of neurons, i.e., the distribution of the
input stimuli is

P(?) = { 5y 7€ [—s,5] x[0,N] (15)

0 otherwise,

and E,F now are scalars k,r and the matrix B is two
dimensional; cf. Ref. [5]. If the height s of the rectangle
is sufficiently small (s < o), i.e., if the input space is
pseudo one dimensional, the chain is mapped onto the
median which cuts the rectangle symmetrically into two
parts and the virtual neuron sites are w? = (8) For
s > s., however, this situation is not stable any longer,
i.e., the symmetric mapping is broken spontaneously and
the image of the chain begins to fold into the input space.

In the limit of a long-ranged neighborhood function
(1 € 0 € N) the matrix B is diagonal [5],

B:('})l /{)2), (16)

where the eigenvalue corresponding to the transversal
mode is

Ao (k) = V2o <§s2(1 _ cosk) exp(—k?0?/2) — 1) N

(17)

and correspondingly for the longitudinal mode

A\ = V2r0o [(—;—(1 + cosk) — azksink)

/N . (18)

A2(k) is seen to change sign at s = s, = 2.020 at a
critical value of k = ko & \/5/0. Hence the mode with
wave vectors of norm ko would grow unrestrictedly for
s > 3. if the nonlinear term would be missing in Eq. (14).
With the nonlinear term we get a competition between
the modes. Let us try an ansatz as a solution for Eq.
(14) by assuming that there is just one mode winning
the competition, i.e.,

x exp(—k?0?/2) — 1

[tko,2| > |Uk,i| » (19)

valid for i = 1,2 if k # ko and for ¢ = 1 if £ = ko, and
ko being the wave number of the winner mode. The am-

plitude of the winning mode will be the order parameter
1(t) in the phase transition from the straight line to the
folded image of the neuron chain in the input space, i.e.,
the absolute value of the order parameter

Y(t) = Uko,2 (20)

directly measures the amplitude of the sinusoidal folding.
Moreover, we assume that the contribution to the cou-
pling term involving the & = 0 mode can be neglected.
This is justified since ug,; represents for k = 0 just the
longitudinal motion of the “center of gravity” of the neu-
rons which may be assumed to be in rest.

The ansatz (19) allows us to derive from Eq. (14) self-
consistently a closed equation of motion for #(t). By
virtue of (19) the only terms that can contribute in lead-
ing order to the nonlinear terms in (14) are those with
q = 2ko or q = 27 — ko, i.e.,

Com'mn (k07 2k0)u—kg ,m! U2kq,m"
and

C2'm’m” (kOa 2w — kO)u2k0—27r,m'u21r—ko,m” .

Using the properties of C (see Appendix), (19), and the
relation Uzr_km = U_pkm = uZ’m the only contribution
surviving in lowest order is

[Ca21(ko, 2ko) + Ca12(ko, —ko)|uzk, 11k, 2 - (21)

Hence, using the diagonality of B from (14) we obtain in
leading order

Ay = €Az(ko)Y + €[Caz1(ko, 2ko)
+C212(ko, —ko)Juzko 1uk, 2 + fro2(¥) - (22)
The accompanying equation for iy, obtained analo-
gously from (14) reads
Aok, 1 = €A1(2ko)Uzko,1
+€C122(2ko, ko) + fako,1(7) - (23)
For sufficiently small ¢ we may work in a continuous time

approximation. For this purpose we introduce a stochas-
tic force for real-valued t as

fk,n (t) = Z fk,n (7715’) ) (t - t’) ) (24)

t'=0

where ¥y is the input stimulus ¥ applied at time t’, where
t' =0,1,2,.... Now, for € sufficiently small, Eq. (23)
may be written as

Ugky,1 = €A1(2ko)Usko,1
+€C122(2ko, ko) + faro,1(t) » (25)

which in the stationary state is solved as

t

Ugko,1(t) = /; dt'Uyy (t — t')[Crz2(ko) ¥ ()P (t')

+faro 1 ()] (26)



5844 R. DER AND M. HERRMANN 49

where the matrix U(t — t') = e B2k)(t-t) je U, =
e~ (t=t)An(2k0) was introduced. The time dependence of
u(t') is purely noisy. Let us assume that the time scale of
the order parameter fluctuations is well separated from
the time scales of the stable modes specifying the decay
of U(t) which is justified for s sufficiently close to s. (see
below). Omitting the noisy contributions to the 1 term
in Eq. (26) we obtain from (23)

Unko,1(t) = A7 1 (2k0)Cr22(2ko, ko) (8)%(2)
+/_ dt'Up(t —t') fare 1 (t) (27)

= A7 1 (2ko)Cr22(2ko, ko) ¥ (1) (t) + bio (2)
(28)

where the noise ¢ is now colored with a correlation time
given by the decay time of the modes with wave vector
2ko, i.e., A\[1(2ko) and A;'(2ko). However, staying suffi-
ciently close to the critical point the characteristic times
relevant to the order parameter can be made arbitrarily
large, so that we may still consider the noise as a white
one in the derivations of the order parameter equation
given below.
Using the above results in Eq. (22) we obtain

Avp = Ap(ko)¥ + g(ko) |9 + Fi(t) (29)
where
g(ko) = [C221(ko, 2ko) + Ca12(ko, —ko)]
X A7t (2ko)C122(2ko, ko) (30)
and
Fku (t) = fko (ﬁ(t)) + ¢ko(t) . (31)

In order to reproduce the standard form of the time-
dependent Ginzburg-Landau equation we introduce a
free energy as

H () =Ho+ 3 (ko) 9l — (ko) I* (32)

and write Eq. (29) as
0

w(t) = _6’(/)*

which in fact may be viewed as the standard form of
the time-dependent Ginzburg-Landau equation describ-
ing the time evolution of the amplitude of the winning
mode which serves as the order parameter in the symme-
try breaking phenomenon.

This equation is valid for values of s = s, i.e., just
about the critical value of s where the dimensional con-
flict begins to make itself felt by a spontaneous symmetry
breaking. For these values of s approximate the eigen-
value A, of the transversal mode (cf. [5]) as

HY) +F(1) , (33)

Az = (s —s.)Q (ko) , (34)
where
Q (ko) = — \/2?\;0 5. (1 — cos ko) exp(—k2a?/2) . (35)

The evaluation of g is rather involved since it requires
the expansion of ® in second order. We obtain for the

amplitude of the mode by means of Egs. (29), (34), and
(35) the following expression:

@)= 0  fors<sc, (36)
(¥} = ay/s — s for s > s, (37)

where
H (%)

The above theoretical expressions are typical for a second
order phase transition from a state with order parameter
1 = 0 into another state with order parameter ¢ # 0.

IV. SIMULATIONS

In the following a series of computer experiments is
described which have been performed in order to test
the results of the Ginzburg-Landau approach. The sim-
ulations support clearly the validity of our theory; cf.
Fig. 1. Moreover, our simulations reveal the existence
of a further metastable state corresponding to a larger
amplitude ¢. As discussed in the Appendix, this state is
connected with the loss of the topographic properties of
the map due to the intersection of non-nearest-neighbor
bordering lines inside the input data distribution.

Including these effects into the free energy H of Eq.
(33) implies that the exact H has not only a minimum

¥ a
0.16- o
0.144
0124 s
01z
0.08-
0.06-
0.04-
0.021
0.0 l T I [ 1
20 201 202 203 204 205 206

—
207 s

FIG. 1. The absolute value of the averaged order parame-
ter ¥ = ug,,2 corresponding to the amplitude of the winning
mode vs the height s of the rectangular input space which
measures the strength of the dimensional conflict and serves
as the control parameter of the considered phase transition.
The order parameter i measures the amplitude of the sinu-
soidal deviations of the synaptic vectors (images of the neu-
rons in input space) from the line of symmetry which is the
stable position of the synaptic vectors below the critical value
of the order parameter s < s.. The full line indicates theo-
retical results of the Ginzburg-Landau solution. Circles and
boxes refer to computer experiments. Open symbols refer to
a simulation with N = 222, k™ = 10, filled ones to N = 89,
k* = 4. As described in the text there are two types of states
with broken symmetry. Circles refer to topology conserving
states that are in accordance with the Ginzburg-Landau the-
ory, whereas boxes denote states that violate topological or-
der. These are reached by a first-order phase transition. The
broken line restricts from above the range of validity of the
Ginzburg-Landau solution.
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at the Ginzburg-Landau solution [obtained from cutting
off the power series expansion of the friction force ® in
(10)] but also for still larger values of ¢. Hence there are
two metastable solutions—a low- and a high-amplitude
one. Correspondingly there are two kinds of phase tran-
sitions possible. On the one hand, there is a second order
one to the low-amplitude Ginzburg-Landau state which
is still topology preserving. On the other hand, there is
a first order transition to the high-amplitude state with
nonpreservation of topology. Both these effects are very
clearly seen in our computer simulations. The first order
transition will be discussed in more detail in a forthcom-
ing paper.

In order to not become trapped immediately in the
larger basin of attraction of the high-amplitude state, we
allowed only very small learning parameters (e = 0.0001,
constant). Periodic boundary conditions in the longitudi-
nal direction have been used, and the number of neurons
N was chosen such that in a good approximation an inte-
ger wave number %N results. The neural chain was ex-
posed to 20000000 stimuli. Most experiments displayed
the following scenario: after an initial period the state
remains close to the theoretical solution given by the
Ginzburg-Landau theory. A few million steps later the
system used to escape to another metastable state with
higher-amplitude folding. Transitions from the high- to
the low-amplitude state are expected to occur less fre-
quently, and indeed have not been observed in the present
experiments.

V. CONCLUSION

In conclusion we remark that we have developed a the-
oretical description of the phase transition taking place
in self-organizing topographic maps if the dimensional
conflict between input space and net topology exceeds a
certain critical value. By means of a single mode ansatz
we could derive the time-dependent Ginzburg-Landau
equations describing the behavior of the order param-
eter close to the critical point where the phase transition
takes place.

In the present paper the derivation of the Ginzburg-
Landau equation was explicitly performed for a simple
example, namely the self-organizing map of a two dimen-
sional homogeneous input space onto a one dimensional
chain of neurons. This particular case was chosen to an-
alyze explicitly the folding phenomenon, noticed for the
first time in [2].

There are many problems for which the proposed ap-
proach may turn out to be of relevance. We mention the
structure formation in the visual cortex [10] where there
are several models which in computer simulations have
proven to reproduce the phenomenon at least in principle.
However, these simulations are very expedient and there
is no general agreement as to the biological relevance of
these models. Our theory may prove helpful here since it
allows us to treat the ordering phenomena produced by
different models in a common framework. Another per-
spective concerns the application of self-organizing fea-
ture maps in data analysis [11]. This includes on the
one hand maps of high dimensional inputs onto a two

r-1 X z r+1

FIG. 2. The domains in a two dimensional rectangular in-
put space of three neurons from a one dimensional chain. All
neural domains border with nearest neighboring domains only
or with the outer margin of the input set.

dimensional neural layer where the dimensional conflict
may lead to more sophisticated patterns formed due to
the symmetry breaking. In particular, investigation of
behavior in the case of inhomogeneous (e.g., Gaussian)
input distributions would be of interest for the practical
applications of Kohonen’s algorithm. A further challenge
arises if the dimensional conflict is enhanced much be-
yond this point. Then, for sufficiently many neurons the
neural vectors form a Peano-like curve in the input space.
This effect can be explained as hierarchy of phase transi-
tions similar to the case described here. The purpose of
the present paper was, however, to present the analytical
treatment of the most simple problem. Applications of
the theory together with a more detailed analysis of the
first-order phase transition will be discussed in a forth-
coming paper.
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APPENDIX: CALCULATION OF THE FRICTION
COEFFICIENTS AND RANGE OF
VALIDITY OF THE GINZBURG-LANDAU
APPROACH

1. Calculation of the friction coeflicients

In the following the coefficient matrices B and C in Eq.
(14) will be determined in the case n = 1, d = 2. For
this purpose we Fourier transform Eq. (10). Consider

X4 zZ,

Zz_ E X_

FIG. 3. Same as Fig. 2, but with non-nearest-neighbor neu-
ral domains having a common border region.
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-F [— 3 e ( ’OT*) Pro(w) = i 3 e Pre (W) + 3 R 80, Bre (W) | (A1)

where W, = @ + U, = ( ) + u,, and 7, :52. + :vr = (ro) +8:v, ,
Flen(w)) = - 2B F 1B () — F) « RV FB (w)])
O {F(00.,) LB (W]} (A2)

where f(i)xg(3) = E fle—7g(3) = EJ. f(7)g(i — j) denotes the convolution, and assuming 1 < 0 < N the Fourier
transform of h,, is

o2k?

2
(

h(k) = Flh(r — r*)] = 2no? exp(— ) - (A3)

In order to find the Fourier transforms of the quantities d and P,(w) we rewrite these expressions. Figure 2
visualizes the situation.

Neglecting from now on terms higher than second order in the 4, we find at a fixed position r for z4 and z4:

L o2

Ii(’l‘) = :ts(ur—l,2 + 11.1.’2)(1 + Up—-1,1 — ur,l) + 5(“7,2 - uz_.],,z + 2r -1 + ur—l,l + ur,l) ) (A4)
1
z2e(r) = £8(ur2 + Urt1,2) (1 + Urt — Urp1,1) + 5(u3+1,2 —uly + 2+ 14U+ Upgrn) (AS5)

where the weighted size of the domain of neuron r (8) is given by

}Kr):![EDU)PGDdﬁ

Lo (1) — 2 (r) + 2 (r) — 2 ()]

il

2N
_ 1 ] Yr-1n n Up41,1 n “3—1,2 4 Y2 7~+1 2 (A6)
N 2 2 2 U2 2

and the mean value of the stimuli that make neuron r to be the winning unit (9) is given by

azf P (5)dv (AT)
vED(r)
- s 2 2
Up1 =T+ z )+ z4(r)z_(r + 22 —z(r) —zye(r)z_(r) —x_(T
1=+ 3py O + 2 (D) + 22 ) — 2k () — a4 (e (r) — 2t ()
_ Ur-11 n Ur,1 n Ur+1,1 "3—1,1 _ u3—1,2 " U3+1,1 u,2~+1,1 _ Up—11Up1 | Up1Uri1l
4 2 4 8 4 8 4 4 4
2 2 2
s fug_q Uy yq,
-5 ( 21 2 L %12 + Up_1,2Up 2 — ur,zu,+1yz> , (A8)

oz = gy E4 () = ()] = e (r) — 2 (7))

2
= ?(_ur—u +2Ur2 — Upt1,2 — Up—11Ur—1,2 F Up 1Ur_1,2 + Up_1,1Ur 2

w

—Up1,1Up 2 — Up 1Up 412 + Ups1,1Urs1,2) - (A9)

Using the relations
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1
Upmn = —F— exp(tkr)tig m ,
f \/N; p( )k,

1
Urtl,m = —F= Zexp(:tik) exp(tkr )i, m ,
VN 4

N
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(A10)

(A11)

we collect the coefficients of terms of F [®,,(w)] (k) that include ug_g mUgm' into Crmm:(k,q). The resulting ex-
pression is given in the case n = 1,d = 2,7 € [0,N) x [-s,s], P(¥) = 3l subject to the symmetry relations

Cmm'm”(k’ Q) = Crmm!'m! (k':k - q) as

Cri2(k,q) = Ci21(k,q) = C211(k,q) = C222(k,q) =0,

Cin(k,q) =i (%[fz(k — g)sin(k — q) + h(q) sin(q)] — iﬁ(k)[sin(k) +sin(k — q) + sin(q)]) :

Ciza2(k,q) = i(%ﬁ(k)[eos(k) -1+ %ﬁ(k) sin(k) + %—iz(k)[sin(k) +sin(k — q) + sin(q)]) ,

C221(k,q) = Ca12(k,q)

= i(%{ﬁ(k — g)sin(k — ) + h(g) sin(q)] - s—;ﬁ(k)[sin(k) —sin(k — q) — sin(q)]) :

2. Range of validity of the Ginzburg-Landau
approach

In the above calculations of each neural domain we as-
sumed that the border lines between the neuron domains
do not cross inside the rectangle representing the input
data distribution. For a larger amplitude 9 of the fold-
ing this will be violated. For a rough estimation of this
effect we consider a continuous arrangement of neural do-
mains in the input space (0, N) x (—s, s) with transversal
components

wa(z) = Y cos(kx) . (A13)
The now infinitesimally wide neural domains are
bounded by straight lines orthogonal to the graph of the
cosine function. In the case ¥ = 0 all borders lines are
parallel. An effect is to be expected if the points of in-
tersection that are present for ¥ # 0 fall inside the input
space, as in the example given in Fig. 3. This will lead
to the breakdown of the series expansion of the friction
force in the generalized Langevin equation, so that for
these values of ¢ the Ginzburg-Landau approach is not
valid. Whether or not this happens is determined by the

(A12)
—
maximal curvature % of the chain,
1 dz‘wz(l‘) 2
; =~z . = ||[vk Cos(kz)|z=0|| . (A14)

The geometrical assumption made above is correct
only if p > s + ¢, i.e., using k* = ?, for

’l/)<'¢c=l(\/82+20'2—s).

- (A15)

For relevant parameters o = 5 and s = 10 the result ob-
tained within the Ginzburg-Landau approach for a one
dimensional chain in a rectangle of height s is valid as
long as ¥ < 9. = 0.1s, indicated by the broken line in
Fig. 1. This boundary for the validity of the Ginzburg-
Landau approach is also well reflected in our computer
simulations. Moreover, our simulations clearly indicate
the existence of a further metastable state for larger val-
ues of ¥. This state is characterized by the intersection of
domain-bordering lines of non-nearest-neighbor neurons
inside the data distribution (cf. Fig. 3). Consequently,
input stimuli which are very close to each other may
have non-neighboring winning neurons, i.e., the topology
preservation of the mapping is lost.
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